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Abstract 

It is usual to use algebraic models for homotopy types. Simplicial groupoids provide such a 
model. Other partial models include the crossed complexes of Brown and Higgins. In this paper, 
the simplicial groupoids that correspond to crossed complexes are shown to form a variety within 
the category of all simplicial groupoids and the corresponding verbal subgroupoid is identified. 
@ 1997 Elsevier Science B.V. 
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0. Introduction 

Algebraic topology aims to translate topological structure to algebraic structure. 

Homotopy types, via their algebraic models, thus become amenable to algebraic ma- 

nipulation (for instance localization), which makes the information they contain more 

accessible. 

The theory of varieties provides a useful set of tools in algebra and, in particular, in 

group theory, which are similar in many ways to those of localization. Any group vari- 

ety leads to a set of ‘equational laws’ satisfied by the groups in it and verbal subgroup 

functors (such as the commutator subgroup) measure deviation from membership of 

the variety. 

The main aim of this paper is to give an example of a variety in a category of 

algebraic models for homotopy types, and to describe the corresponding equational 

laws by means of a verbal subgroup construction. 
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The algebraic model we shall consider is that of simplicial groupoids. These model 

all homotopy types completely [ll]. Our variety will be a subcategory consisting of 

groupoid T-complexes. These form a category equivalent to the category of crossed 

complexes. Crossed complexes have been extensively studied by Brown and Higgins 

[3] and can either be viewed as a complete algebraic model for a restricted class 

of homotopy types or as partial models of the homotopy types of all spaces. Their 

advantage is that they contain information on the fundamental groupoid of the space 

and thus are ‘slightly non-abelian’. 

The main points of this paper are thus: 

(i) to prove that Gpd-T, the category of groupoid T-complexes is a variety (epi- 

reflective subcategory) in the category, SGpds,, of simplicial groupoids with constant 

object of objects; 

(ii) to identify the verbal subgroupoid corresponding to the variety of groupoid 

T-complexes. 

1. Preliminaries 

1.1. Simplicial groupoids 

We refer the reader to Curtis [9] for a brief overview of the theory of simplicial 

groups. We will need extensions of some of this theory to simplicial groupoids or to 

be more exact to simplicial groupoids whose simplicial set of objects, or identities, 

is constant. Results on such simplicial groupoids are mostly parallel to, and exten- 

sions of, the corresponding group versions and are proved in a similar way. The full 

subcategory SGpds, of the category SGpds, of simplicial groupoids is defined by the 

condition: 

G E SGpds, w Oh(G) = X for some set X. 

If some X is given and fixed for the duration of some argument, we may also con- 

sider a subcategory, SGpdslX, of SGpds, in which all objects have Oh(G) =X and 

f : G + H is in SGpds/X if and only if the object function, Ob(f ), of f is the 

identity map of X. If X is a singleton set then SGpds/X is equivalent to the category 

of simplicial groups. 

1.2. The Dwyer-Kan path groupoid construction 

Let K be a simplicial set, with vertex set Ko. We define (GK)n to 

with object set {X : x E Ko} and morphisms generated by the ‘edges’ 

be the groupoid 

ji : dldz...d,,+l y + dodz...d,,+l y 
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for all y E K,+i, with relations 

for all 2 E K,. 

These groupoids are free, as the relations have the effect of deleting certain generating 

edges, thus to define face and degeneracy maps between them, it is sufficient to define 

them on generating edges: 

l for i > 0, Qj : (GK), -+ (GK),+i is given by cr$ = .Q_~x, 

l for i > 0, ai : (G&l,+1 + (GQ is given by &Z=dd+tx, whilst 6s : (GK),+i -+ -~ 
(GJ& is given by &F = (dix)(&x)-‘. 

Dwyer and Kan proved in [ 1 l] that G has an adjoint v, and that the counit of the 

G, W adjunction is a weak equivalence K --f WGK, thus simplicial groupoids model 

all homotopy types. In a simplicial groupoid G, let L&(G) be the sub~oupoid of Gn 

generated by the degenerate elements. (Usually we will write D, instead of D,(G) if 

the particular groupoid, G, is clear.) 

Proposition 1.1. A simplicial groupoid is a Kan complex and furthermore, any box 
in Gz-l has a filler in L&. 

1.3. The homotopy theory of a simplicial groupoid 

The homotopy theory of simplicial groupoids is parallel to that of simplicial groups. 

Let G be a simplicial groupoid, then by its Moore complex we mean the chain complex 

(NG, 3) of groupoids defined by 

(NG)n = h Kerdy 
i=l 

with a, : (NG)n + (NG),-t being given by the restriction of di to (NG)I1. We note 

that as the face (and degeneracy) maps of G are the identity on objects for n 2 1, 

each Kerdl (and hence the int~section (NG),) is a totally disconnected, normal, wide 

subgroupoid of G,, i.e. is the disjoint union of the vertex groups Kerdl(a), a E Ub(G). 
In particular &-id, maps (NG)n to the discrete groupoid on G&G), so that (NG,a) 

is, indeed, a chain complex of groupoids over Oh(G). Thus all but (NG)s of the 

groupoids concerned are totally disconnected, i.e. are disjoint unions (coproducts) of 

groups as groupoids, and (NG)a g GO. This base groupoid GO acts on all the (NG), by 

hg = t(~o~h)g((~~~h)-~ and similarly one checks that i?,(NG), is normal in (NG),_r. 

Using this observation it is easy 

(a) to extend the analysis of the ‘hypercrossed complex structure’ of (NG, a) from 

the reduced case of simplicial groups to this wider context of simplicial groupoids. 

(b) to prove a groupoid version of the Carrasco-Cegarra theorem [6], which shows 

the categories of hypercrossed complexes and simplicial groups to be equivalent. We 

will not prove this theorem here as the necessary extensions of their results are routine 

given the extensions of notions of an action and a semidirect product from groups to 

groupoids. 
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1.4. Crossed complexes 

The theory of crossed complexes can be found mostly in the work of Brown and 

Higgins (see bibliography for a selection of references.) The following definition can 

be found in [4] but with a shift in dimension. 

A crossed complex C, over a groupoid, is a sequence 

. . . ---f cn+l --) c, -+ ... + C, + C, --f Cc 3 ObC 

where 

(i) Co =f ObC is a groupoid with object set Oh(C) (we write Co(a) for Co(a,a), 

a E ObC); 
(ii) C,, is a family of groups {Cn(a)}aEobc for IZ 2 1 (and hence is also a groupoid 

over ObC); 
(iii) C,(a) is abelian for n 2 2, a E ObC; 
(iv) CO acts on C,,, on the left, for all II 2 1, by (h,g) H ‘g, where if g E C,(a) 

and h E Co(b,a),hg E C,(b); 
(v) the 8, are all groupoid morphisms which preserve the action; 

(vi) if x, y E Cl(a), then ‘Oxy = xyx-’ and d&r (a) acts trivally on C,(b) for n 2 2 

and all a,b EObC, 
(vii) f3,_r a, is trivial for n 2 1. 

There is an obvious notion of morphism of crossed complexes, giving a category, 

Crs. 

1.5. The semidirect decomposition of simplicial groupoid 

The basic idea behind this is to be found in Conduche [7]. A detailed analysis of it 

in the case of a simplicial group is in Carrasco and Cegarra [6]. The decomposition 

is based on the observation that in a simplicial group, di : G,, -+ G,,_l is a split 

epimorphism, split by sir:, and as a consequence 

One obtains a semidirect decomposition of G, by iterating this product not only on 

G,-1, but also on Kerdi. (The kernel of the last face map Kerdlast is the kernel of 

a simplicial group epimorphism from DecG to G (for DecG, see [ 13]), hence is a 

simplicial group in its own right.) 

Using the notion of semidirect product for groupoids, one easily adapts this to the 

case of G in SGpds,: 

Proposition 1.2. Given any simplicial groupoid, G, the groupoid of n-simplices G, 
satisjies 

G,, r(...(NGnx,soNG,_1)xl...xls,-2...soNG1) 

x~(...(s,_JVG,_~ ~s,_~soNGn--2)>cl~~~><ls,-1 . ..soNGo). 
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1.6. Simplicial T-complexes 

We recall the following definition due to Dakin [lo]. 

A T-complex (K, T) is a pair where K is a simplicial set and T = (Tn),,zl is a 

graded subset of (K,)+l. The elements of the T,, are called thin elements. This data 

is assumed to satisfy the axioms: 

T.l. Every degenerate element is thin. 

T.2. Every box has a unique thin filler. 

T.3. The thin filler of a thin box has a thin lid. 

By a box in K,,, we mean a set of elements x0,x1,. . . ,x+~,.q+l,. . .x, such that 

Xj E K,_ 1 0’ # i) and dkxj = dj- lxk for j > k, j, k # i; a ‘filler’ for such a box is an 

element y E K,, such that djy = xj for j # i, the ‘missing face’ diy is then called the 

‘lid’. 

Ashley [l] proved that the category of T-complexes is equivalent to that of crossed 

complexes (over groupoids). He also introduced the notion of a group T-complex. 

The definition of groupoid T-complexes and the corresponding results are the obvious 

groupoid versions of his results. A groupoid T-complex (G, T) is a T-complex where 

G is in SGpds,, each T,, is a subgroupoid of the corresponding G, and the underlying 

pair forms a T-complex. 

Proposition 1.3. If (G, T) is a groupoid T-complex, then T,, = D,, the subgroupoid 
generated by degenerate elements. 

Proposition 1.4. If G is a simplicial groupoid then (G,D) is a groupoid T-complex 
if and only if D n NG is trivial, i.e. consists only of identities. 

Proof. See [l] for the group case. 0 

This gives a purely algebraic criterion for G to be a groupoid T-complex. 

2. From simplicial groupoids to crossed complexes 

First some notation, we will write as above 

C(G)’ = (NC, n D,)do(NG,,+l n Dn+l) 

If x E NG,, , X will denote the corresponding element of C(G),. The map 

a : C(G), + C(G),_i 

will be induced by do. 
We first check that this makes sense. 
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Lemma 2.1. The subgroupoid (NC, n D,)do(NG,,+l n D,,+l) is normal in G,,. 

Proof. The proof is easy, so is omitted. Cl 

Proposition 2.2. Let G be a simplicial groupoid in SGpds,, then dejining 

NG, 
C(G)n = (NG, n D,)d,,(NG,,+, n D,+I) 

with 

a,(z) = d,,z, 

yields a crossed complex, (C(G), a) over a groupoid. 

Proof. This is a consequence of the theory of hypercrossed complexes of Carrasco and 

Cegarra, [6]. A short (5 page) direct proof is the subject of the note [12]. 0 

We note that if G is a groupoid T-complex then (C(G), a) S? (NG, a). The question 

naturally arises as to whether there is a functor T : SGpds, ---f SGpds,, taking values 

in the subcategory of groupoid T-complexes, and such that C(G) ?! N( T(G)). It is 

clear how to proceed, namely by using the semidirect decomposition of G, replacing 

each NG,, by C(G),,. In fact it is reasonably easy to construct a fimctor K ‘inverse’ to 

N, K : 0-s + SGpd, and then we can set T = KC. The construction is based on the 

following elementary observation. 

Lemma 2.3. Let M, N be G-groups (i.e. groups with a G-action), and form M x N, 
their product with the diagonal action of G. Then 

(MxN)xlG”Mxl(NxlG) 

where A4 is considered as a (NxlG)-group via the projection onto G (so cn,e)rn = em). 

The proof is omitted as it is easy. 

Proposition 2.4 (A Dold-Kan theorem for groupoid T-complexes). There is a jiinc- 
tor K : 0-s --+ SGpds, so that 

(i) for each C in O-s, KC is a groupoid T-complex, 
(ii) if C is in Crs, there is a natural isomorphism 

NK(C) g C, 

(iii) if G is a groupoid T-complex, KN(G) g G. 

Proof. We first note that there is a chain complex (with one non-abelian groupoid) 

given by all Ci, i 2 1. From this we construct a simplicial group K.+l(a) for each 

a E Oh(C) using the Dold-Kan construction [9]. (Thus for instance 

K3(a) = CJ(a) x s&2(a) X slC2(a) X slsoCl(a).) 
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As there is no action of any group on any other in the chain complex, there is 

no problem in constructing K.+t. Now we set K(G)0 = CO, and note that it acts on 

K1 = {Cl (a)}. Assuming that K(G),_1 has been defined and an action of K(G),_1 
on K,, given, we set 

K(G),, = Kn w sn-lK(G)n-1 

and, noting that there is an iterated projection onto CO, make K(G)n act on K,,+I via 

this projection. It is routine to check that this gives us a sirnplicial groupoid K(C) 
with Moore complex isomorphic to C, thus proving (ii). If C = N(G) for a groupoid 

T-complex, it is clear that KC 2 G. We leave the details of this to the reader. 

It remains to prove that KC(G) is a groupoid T-complex. For this we note that 

by repeated use of Lemma 2.3, K(C) % C, >cl (S&,-I x ... x s,-1 . ..soCo) but 

NK(C), EC,, D, F (s~C,_~ x...xs,_~ . . . S&O) and hence NK(C), n D, is trivial 

as required. 0 

Various other versions of this result have been proved previously. Nan-Tie [14] 

proves a Dold-Kan theorem exactly of this form, but with a different definition of 

groupoid T-complexes; see also [15] The above result (2.4) hence also proves that his 

definition is equivalent to that given here. The reduced case can be found in [6] and 

as we noted several of the ideas from their proof are present in the above. 

Although we know that C(G) is a quotient of NG, we do not automatically have 

that KC(G) is a quotient of G. The main result of the argument so far is: 

Theorem 2.5. Let Gpd-T denote the fill subcategory of SGpds, determined by the 
groupoid T-complexes, then the inclusion of Gpd-T into SGpds, has a left adjoint 
T = KC which satisfies T2 g T. 

Proof. If G is in SGpds,, then the quotient map NG -+ C(G) is compatible with 

the hypercrossed complex structure of the two Moore complexes (cf. the argument on 

p. 223 of Carrasco and Cegarra [6]) and hence corresponds to a quotient map 

G + T(G). 

If f : G -+ H is any map of simplicial groupoids with H a groupoid T-complex, then 

we may assume that f is over a fixed base map since otherwise, we can pull H back 

along the base map of f to reduce to that case. As H is a groupoid T-complex, 

fn(WGn n D,VoWn+l n &+I )> 

is trivial, so f factors uniquely via a quotient map to T(G) as required. 17 

We thus have a composite functor 

Simp.Sets -+ Gpd-T 

given by TG. 
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The groupoids TG(K),, have been calculated to be n,(sk,,G,sk,_lG) [6] and hence to 

be n,+l(sk,+lK,sk,K) by a long exact sequence argument. Thus C(G(K)) E ~(1 K I), 
the crossed complex associated to the filtered geometric realization of K. 

Remark. It is worth noting that if L : A -+ SimpSets is a fimctor and K = ColimL, 

then (i) G(K) % Colim G(L) (ii) C(G(K)) 2 Colim C(G(L)) and (iii) T(G(K)) E Colim 

T(G(L)) as each of G, C and T are left adjoints and hence preserve colimits. 

3. The ‘verbal’ subgroup(oid) 

The reason for the title of this section is that in proving Theorem 2.5 above we 

obtained a quotient map from each G to the corresponding T(G) which is analogous 

to the map comparing a group, G, with its ‘V-ification’ for V a variety of groups. 

The kernel of such a map is the verbal subgroup of G corresponding to Y. Thus a 

‘verbal subgroup(oid)’ would be the natural thing to look for in our setting, giving 

those words whose vanishing is necessary and sufficient for a simplicial groupoid to 

be in Gpd-T. We have of course, already one description of this verbal subgroupoid 

V(G), namely it satisfies 

Nv(G>n = WC, n Dn)doWG+l n &+I 1, 

however this does not give a useful description of V(G) as we have little direct 

knowledge of what NG,, n D,, or do(NG,+l n D,+,) looks like. 

3. I. Derived modules and relative abelianisations 

To analyse V(G) in more detail, we use a construction from [16], adapted to the 

groupoid case, and later on a related construction of Brown and Higgins [4]. 

Let 0 be a set, then we will call a groupoid with object set, 0, simply an 0-groupoid. 

Let G be an 0-groupoid and 0-Gpds, the subcategory of Gpd determined by the O- 

groupoids and the groupoid morphisms between 0-groupoids that are the identity on 

objects. Let 0-Gpds/G denote the category of 0-groupoids over G. This category has 

finite products given by pullback over G, so we can consider abelian group objects in 

it. A calculation (going back in essence at least to [2]) shows that 4 : H --f G is an 

abelian group object in 0-Gpds/G if and only if H % M ZQ G for some G-module A4 

with 4 the projection. The construction we will use is the abelianization, i.e. the left 

adjoint of the inclusion of the category of these abelian group objects into 0-GpdslG. 
Now consider a general 

V&~)~@~=GP~G) 

then 

f(h) = u-l(h), 4(h)) 
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for some mapping J-1 : H + M. This fi is a &derivation (again see [4, p. 38]), 

fi (Ah’) = j-l(h) + 4yi (A’). 

Writing Derti(H,M) for the set of &derivations from H to M, we have 

O-GpdslG((H, 4), (M = G, PrG)) g DqWJf) 

and as (M x G, pro) is an abelian group object, Derb(H,M) naturally has an abelian 

group structure. 

If 0 is a singleton, that is if we are working with groups throughout, then Derb(H,M) 
E G-Mod(Db,M), where D4 is the derived module of (H, 4) in the sense of [8]. This 

is well known to be isomorphic to ZH @H ZG where ZH = ker(ZH + Z) is the 

augmentation ideal of the group ring ZH of H. Brown and Higgins [4, pp. 37-39]), 

show that in the general case of 0-groupoids, a similar construction works yielding a 

G-Module z’c, a constant G-module 2, with value Z, and an augmentation module 

12 which is the derived module for the terminal object (G,zdo) of 0-Gpds. (A right 

action is used in [4] but this is easily changed to a left one.) Finally D,#,, for a general 

(H, c#I), is isomorphic to C&(G), the G-module induced from G along 4 : H + G. 
This c$* functor from H-modules to G-modules is a left additive Kan extension along 

4 : H + G, so has a description very much like that of - @H ZG of which it is a 

generalization. Thus 

O-G&/c((H, 4), (M >Q G PrG)> 

z Ab(O-Gpds/o)((Db >cl G, pro), (M >Q G, prG) g G-Mod(D#,M), 

i.e. the “abelianization” of (H, 4), or free abelian group object on (H, c$), is (D+ XI G, 
pr). We next turn to exactness properties of this derived module construction. 

Lemma 3.1. Given a short exact sequence 

in 0-Gpds, there is a short exact sequence of Q-modules, 

O+NAb+Dp+I&O 

where NAb is obtained by abelianizing all the groups of N, which being a kernel in 
0-Gpds is a disjoint union of the groups N(a) for a E 0. 

This follows from Proposition 3.1 of Brown-Higgins [4, p. 461. In fact we only use 

Lemma 3.1 in the simpler case where p is split, in which case the module sequence 

is also split: 

O+N+H&Q+O 
P 
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yields 

O+NAb~Dp&Q-0 
S’ 

so we have an isomorphism 

D, g NAb @ &(I;). 

Now assume in addition this all happens in 0-Gpds/G so that the structure map from 

N to G is trivial. Then we have 

D$ = $$‘e), 

D# = $t+$& = &(Dp) ” Do @ s*(D$)), 

Do = &(NAb). 

If I/I is a quotient map, then &(NAb) is constructed by killing the action of Ker$, 
i.e. 

N 

‘*(NAb) ” [N, N][N, s(Ker$)] 

As both N and Ker$ are disconnected, this is effectively the classical construction at 

each object in 0. We have 

Lemma 3.2. In the above situation, there is a natural isomorphism 

D’ E 
N 

[N, N][N, s(Ker+)] ’ s’(D’)* 

Now consider a simplicial groupoid over G (e.g. a resolution in 0-Gpd for G or 

the augmentation map H + TTOH for a simplicial groupoid G = x0(H).) We write 

40 : HO + G, $1 = &do = &dl and so on, so that & : H, + G is the structure map 

of the groupoid of n-simplices, $ndj = q&+1 for all i, 0 < i < n, and similarly for 

the Sj, 4nSj = &_I. We will also write this as I$. : H. + G, thinking of G as being 

K(G, 0), the constant simplicial groupoid on G. 

On applying the abelianisation functor (over G) as before, this yields D(4). >Q G 
over G which in dimension n is D@,, ><I G. We now restrict to the case of H being a 

simplicial groupoid, with G = TCO(H. ) and $0 being the standard quotient morphism. 

In this case, Ker& is doNHI so we obtain 

D(+)o = 40*(&, 

@soWD(4)1) @ sl(D($h), 
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and so on. The semidirect decomposition of H,, yields the direct sum decomposition of 

D(@)n as a ~~(~)-module. The face and degeneracy mo~hisms are, of course, those 

induced by the corresponding ones of H. In the above, we have used ~~~(~))~. If 

we write K,, for the simplicial subgroupoid, Ker#. : H. -+ p,(H.), i.e. the kernel of 

the simplicial map to the constant simplicial groupoid, no(H.), then K, has a semidi- 

rect decomposition which is the same as that of H, except that HO is replaced by 

&NEZt, so instead of the term s,_i . . .stsoHo, it contains sn_t . . .qs&NH~. Using this 

subgroupoid, we find if 8 2 1 

so the passage to ND(#) merely kills the action of Ker#. 

A geometric inte~retation of this derived module const~ction is not obvious, how- 

ever there is one which is related to the complex of chains on the universal cover 

of a CW-complex. The link is via ideas originally explored by Whitehead [17] and 

then considerably extended by Brown and Higgins [4]. Suppose G is an 0-groupoid 

and (M.,8) is a complex of G-modules, then we form a crossed complex 

M&a) by 

d(M., a), = M, if n 2 1 

A(M., a), = MO x G 

where for p1> 1, the boundary map 

is that of M., whilst for y1 = 1, al(m) = (am, lP) if nr E MO(~). This defines a functor 

A from Comp(G-Mod) to &k/G, i.e. crossed complexes augmented over the fixed G. 

This functor has a left adjoint: 

If (C., 4) is a crossed complex augmented over 4 : CO -+ G, define 

i(C.,+)n = C, if n 2 2 

i(C.,4b)I = CP, the abelianization of Ci, 

i(C., $)o = D#, 

with the differential of I;(C., 4) induced, in the obvious way, from that of C.. The 

proof that C is left adjoint to A should be fairly clear given our earlier ‘recall’ of the 

theory of derived modules, alternatively it can be found in [4]. 

Proposition 3.3. IJH. is a s~rn~l~c~~ gro~pa~d, augmented via 4 : H. -+ no(&), and 

C(H.) is the associated crossed complex then [(C(H.), (;b) S ND(#). 

Proof. Consider the corresponding right adjoints and used the Dold-Kan theorem. 0 
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Corollary 3.4. For n > 2, 

where K,, = (Ker$) as before. 

Proof. By the previous discussion, [ does nothing in dimensions greater than 1. 0 

Thus we have a second description of C(H.) and hence of the verbal subgroupoid 

or at least of its Moore complex N’YP-(H)~ !Z [NH,,K,]. 
In dimension 1, the verbal subgroupoid is generated by the Peiffer identities and 

hence can be conveniently written as 

NV”(H)1 = [Kerdl, Kerdol = do(NHz n 02) 

(see [5]). Finally in dimension zero it is trivial as C(H)0 = NH0 = HO. This gives our 

main theorem: 

Theorem 3.5 (Generating words for the variety of crossed complexes). The verbal si- 
mplicial subgroupoid of G. corresponding to the variety of groupoid T-complexes is 
given by 

(i) Y(G)0 is trivial, 
(ii) V(G)1 is generated by all [x, y],x E NGl, y E Kerdo 

(iii) NV(G)n is generated by all [x, y],x E NG,, y E (Ker$),, for n 2 2. 

Of course in V(G),, we also have all of s,NV(G),_,(,) and so to obtain a full de- 

scription of a set of generators of Y(G),, one needs to include all images of generators 

of the lower terms in the Moore complex and their conjugates in G,,. To use Theorem 

3.5 for calculations it will be necessary to look at the case of a free simplicial group 

or groupoid, G. and to see if the analysis of Hall words can be adapted to this case. 
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