Varieties of simplicial groupoids I: Crossed complexes

P.J. Ehlers, T. Porter*
School of Mathematics, University College of North Wales, Dean Street, Bangor, Gwynedd, LL57 1UT, UK

Communicated by C.A. Weibel; received 7 December 1994; revised 28 June 1995

Abstract

It is usual to use algebraic models for homotopy types. Simplicial groupoids provide such a model. Other partial models include the crossed complexes of Brown and Higgins. In this paper, the simplicial groupoids that correspond to crossed complexes are shown to form a variety within the category of all simplicial groupoids and the corresponding verbal subgroupoid is identified. (C) 1997 Elsevier Science B.V.

1991 Math. Subj. Class.: 55P15, 55U35, 18G30, 18G55

0. Introduction

Algebraic topology aims to translate topological structure to algebraic structure. Homotopy types, via their algebraic models, thus become amenable to algebraic manipulation (for instance localization), which makes the information they contain more accessible.

The thcory of varieties provides a useful set of tools in algebra and, in particular, in group theory, which are similar in many ways to those of localization. Any group variety leads to a set of 'equational laws' satisfied by the groups in it and verbal subgroup functors (such as the commutator subgroup) measure deviation from membership of the variety.

The main aim of this paper is to give an example of a varicty in a catcgory of algebraic models for homotopy types, and to describe the corresponding equational laws by means of a verbal subgroup construction.

[^0]The algebraic model we shall consider is that of simplicial groupoids. These model all homotopy types complctcly [11]. Our variety will be a subcategory consisting of groupoid T-complexes. These form a category equivalent to the category of crossed complexes. Crossed complexes have been extensively studied by Brown and Higgins [3] and can either be viewed as a complete algebraic model for a restricted class of homotopy types or as partial models of the homotopy types of all spaces. Their advantage is that they contain information on the fundamental groupoid of the space and thus are 'slightly non-abelian'.

The main points of this paper are thus:
(i) to prove that $G p d-T$, the category of groupoid T-complexes is a variety (epireflective subcategory) in the category, $S G p d s_{*}$, of simplicial groupoids with constant object of objects;
(ii) to identify the verbal subgroupoid corresponding to the variety of groupoid T-complexes.

1. Preliminaries

1.1. Simplicial groupoids

We refer the reader to Curtis [9] for a brief overview of the theory of simplicial groups. We will need extensions of some of this theory to simplicial groupoids or to be more exact to simplicial groupoids whose simplicial set of objects, or identities, is constant. Results on such simplicial groupoids arc mostly parallel to, and extensions of, the corresponding group versions and are proved in a similar way. The full subcategory $S G p d s_{*}$ of the category $S G p d s$, of simplicial groupoids is defined by the condition:

$$
G \in S G p d s_{*} \Leftrightarrow O b(G)=X \text { for some set } X
$$

If some X is given and fixed for the duration of some argument, we may also consider a subcategory, $S G p d s / X$, of $S G p d s_{*}$ in which all objects have $O b(G)=X$ and $f: G \rightarrow H$ is in $S G p d s / X$ if and only if the object function, $O b(f)$, of f is the identity map of X. If X is a singleton set then $S G p d s / X$ is equivalent to the category of simplicial groups.

1.2. The Dwyer-Kan path groupoid construction

Let K be a simplicial set, with vertex set K_{0}. We define $(G K)_{n}$ to be the groupoid with object set $\left\{\bar{x}: x \in K_{0}\right\}$ and morphisms generated by the 'edges'

$$
\bar{y}: \overline{d_{1} d_{2} \ldots d_{n+1} y} \rightarrow \overline{d_{0} d_{2} \ldots d_{n+1} y}
$$

for all $y \in K_{n+1}$, with relations

$$
\overline{s_{0} z}=i d_{\overline{d_{1} d_{2} \ldots d_{n} z}}
$$

for all $z \in K_{n}$.
These groupoids are free, as the relations have the effect of deleting certain generating edges, thus to define face and degeneracy maps between them, it is sufficient to define them on generating edges:

- for $i \geq 0, \sigma_{i}:(G K)_{n} \rightarrow(G K)_{n+1}$ is given by $\sigma_{i} \bar{x}=\overline{s_{i+1}} x$,
- for $i>0, \delta_{i}:(G K)_{n+1} \rightarrow(G K)_{n}$ is given by $\delta_{i} \bar{x}=\overline{d_{i+1} x}$, whilst $\delta_{0}:(G K)_{n+1} \rightarrow$ $(G K)_{n}$ is given by $\delta_{0} \bar{x}=\left(\overline{d_{1} x}\right)\left(\overline{d_{0} x}\right)^{-1}$.
Dwyer and Kan proved in [11] that G has an adjoint \bar{W}, and that the counit of the G, \bar{W} adjunction is a weak equivalence $K \rightarrow \bar{W} G K$, thus simplicial groupoids model all homotopy types. In a simplicial groupoid G, let $D_{n}(G)$ be the subgroupoid of G_{n} generated by the degenerate elements. (Usually we will write D_{n} instead of $D_{n}(G)$ if the particular groupoid, G, is clear.)

Proposition 1.1. A simplicial groupoid is a Kan complex and furthermore, any box in G_{n-1} has a filler in D_{n}.

1.3. The homotopy theory of a simplicial groupoid

The homotopy theory of simplicial groupoids is parallel to that of simplicial groups. Let G be a simplicial groupoid, then by its Moore complex we mean the chain complex ($N G, \partial$) of groupoids defined by

$$
(N G)_{n}=\bigcap_{i=1}^{n} \operatorname{Kerd}_{i}^{n}
$$

with $\partial_{n}:(N G)_{n} \rightarrow(N G)_{n-1}$ being given by the restriction of d_{0}^{n} to $(N G)_{n}$. We note that as the face (and degeneracy) maps of G are the identity on objects for $n \geq 1$, each $\operatorname{Kerd}_{i}^{n}$ (and hence the intersection $(N G)_{n}$) is a totally disconnected, normal, wide subgroupoid of G_{n}, i.e. is the disjoint union of the vertex groups $\operatorname{Kerd}_{i}^{n}(a), a \in O b(G)$. In particular $\partial_{n-1} \partial_{n}$ maps $(N G)_{n}$ to the discrete groupoid on $\operatorname{Ob}(G)$, so that $(N G, \partial)$ is, indeed, a chain complex of groupoids over $\operatorname{Ob}(G)$. Thus all but $(N G)_{0}$ of the groupoids concerned are totally disconnected, i.e. are disjoint unions (coproducts) of groups as groupoids, and $(N G)_{0} \cong G_{0}$. This base groupoid G_{0} acts on all the ($\left.N G\right)_{n}$ by ${ }^{h} g=\left(\left(s_{0}\right)^{n} h\right) g\left(\left(s_{0}\right)^{n} h\right)^{-1}$ and similarly one checks that $\partial_{n}(N G)_{n}$ is normal in $(N G)_{n-1}$.

Using this observation it is easy
(a) to extend the analysis of the 'hypercrossed complex structure' of ($N G, \partial$) from the reduced case of simplicial groups to this wider context of simplicial groupoids.
(b) to prove a groupoid version of the Carrasco-Cegarra theorem [6], which shows the categories of hypercrossed complexes and simplicial groups to be equivalent. We will not prove this theorem here as the necessary extensions of their results are routine given the extensions of notions of an action and a semidirect product from groups to groupoids.

1.4. Crossed complexes

The theory of crossed complexes can be found mostly in the work of Brown and Higgins (see bibliography for a selection of references.) The following definition can be found in [4] but with a shift in dimension.

A crossed complex C, over a groupoid, is a sequence

$$
\cdots \rightarrow C_{n+1} \rightarrow C_{n} \rightarrow \cdots \rightarrow C_{2} \rightarrow C_{1} \rightarrow C_{0} \rightrightarrows O b C
$$

where
(i) $C_{0} \rightrightarrows O b C$ is a groupoid with object set $O b(C)$ (we write $C_{0}(a)$ for $C_{0}(a, a)$, $a \in O b C$);
(ii) C_{n} is a family of groups $\left\{C_{n}(a)\right\}_{a \in O b C}$ for $n \geq 1$ (and hence is also a groupoid over $O b C$);
(iii) $C_{n}(a)$ is abelian for $n \geq 2, a \in O b C$;
(iv) C_{0} acts on C_{n}, on the left, for all $n \geq 1$, by $(h, g) \mapsto{ }^{h} g$, where if $g \in C_{n}(a)$ and $h \in C_{0}(b, a),{ }^{h} g \in C_{n}(b)$;
(v) the ∂_{n} are all groupoid morphisms which preserve the action;
(vi) if $x, y \in C_{1}(a)$, then ${ }^{\partial_{0} x} y=x y x^{-1}$ and $\partial_{0} C_{1}(a)$ acts trivally on $C_{n}(b)$ for $n \geq 2$ and all $a, b \in O b C$;
(vii) $\partial_{n-1} \partial_{n}$ is trivial for $n \geq 1$.

There is an obvious notion of morphism of crossed complexes, giving a category, Crs.

1.5. The semidirect decomposition of simplicial groupoid

The basic idea behind this is to be found in Conduché [7]. A detailed analysis of it in the case of a simplicial group is in Carrasco and Cegarra [6]. The decomposition is based on the observation that in a simplicial group, $d_{n}^{n}: G_{n} \rightarrow G_{n-1}$ is a split epimorphism, split by s_{n-1}^{n-1}, and as a consequence

$$
G_{n} \cong \operatorname{Kerd}_{n}^{n}>\Delta s_{n-1}^{n-1} G_{n-1} .
$$

One obtains a semidirect decomposition of G_{n} by iterating this product not only on G_{n-1}, but also on $\operatorname{Kerd}_{n}^{n}$. (The kernel of the last face map $\operatorname{Kerd}_{\text {last }}$ is the kernel of a simplicial group epimorphism from $\operatorname{Dec} G$ to G (for $\operatorname{Dec} G$, see [13]), hence is a simplicial group in its own right.)

Using the notion of semidirect product for groupoids, one easily adapts this to the case of G in $S G p d s_{*}$:

Proposition 1.2. Given any simplicial groupoid, G, the groupoid of n-simplices G_{n} satisfies

$$
\begin{aligned}
G_{n} \cong(\ldots(& \left.\left.N G_{n}>s_{0} N G_{n-1}\right) \gg \cdots>s_{n-2} \ldots s_{0} N G_{1}\right) \\
& >\left(\ldots\left(s_{n-1} N G_{n-1} \gg s_{n-1} s_{0} N G_{n-2}\right) \ggg>s_{n-1} \ldots s_{0} N G_{0}\right) .
\end{aligned}
$$

1.6. Simplicial T-complexes

We recall the following definition due to Dakin [10].
A T-complex (K, T) is a pair where K is a simplicial set and $T=\left(T_{n}\right)_{n \geq 1}$ is a graded subset of $\left(K_{n}\right)_{n \geq 1}$. The elements of the T_{n} are called thin elements. This data is assumed to satisfy the axioms:
T.1. Every degencrate clement is thin.
T.2. Every box has a unique thin filler.
T.3. The thin filler of a thin box has a thin lid.

By a box in K_{n}, we mean a set of elements $x_{0}, x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots x_{n}$ such that $x_{j} \in K_{n-1}(j \neq i)$ and $d_{k} x_{j}=d_{j-1} x_{k}$ for $j>k, j, k \neq i$; a 'filler' for such a box is an clement $y \in K_{n}$ such that $d_{j} y=x_{j}$ for $j \neq i$, the 'missing face' $d_{i} y$ is then called the 'lid'.

Ashley [1] proved that the category of T-complexes is equivalent to that of crossed complexes (over groupoids). He also introduced the notion of a group T-complex. The definition of groupoid T-complexes and the corresponding results are the obvious groupoid versions of his results. A groupoid T-complex (G, T) is a T-complex where G is in $S G p d s_{*}$, each T_{n} is a subgroupoid of the corresponding G_{n} and the underlying pair forms a T-complex.

Proposition 1.3. If (G, T) is a groupoid T-complex, then $T_{n}=D_{n}$, the subgroupoid generated by degenerate elements.

Proposition 1.4. If G is a simplicial groupoid then (G, D) is a groupoid T-complex if and only if $D \cap N G$ is trivial, i.e. consists only of identities.

Proof. See [1] for the group case.

This gives a purely algebraic criterion for G to be a groupoid T-complex.

2. From simplicial groupoids to crossed complexes

First some notation, we will write as above

$$
C(G)_{n}=\frac{N G_{n}}{\left(N G_{n} \cap D_{n}\right) d_{0}\left(N G_{n+1} \cap D_{n+1}\right)}
$$

If $x \in N G_{n}, \bar{x}$ will denote the corresponding element of $C(G)_{n}$. The map

$$
\partial: C(G)_{n} \rightarrow C(G)_{n-1}
$$

will be induced by d_{0}.
We first check that this makes sense.

Lemma 2.1. The subgroupoid $\left(N G_{n} \cap D_{n}\right) d_{0}\left(N G_{n+1} \cap D_{n+1}\right)$ is normal in G_{n}.
Proof. The proof is easy, so is omitted.
Proposition 2.2. Let G be a simplicial groupoid in $S G p d s_{*}$, then defining

$$
C(G)_{n}=\frac{N G_{n}}{\left(N G_{n} \cap D_{n}\right) d_{0}\left(N G_{n+1} \cap D_{n+1}\right)}
$$

with

$$
\partial_{n}(\bar{z})=\overline{d_{0} z}
$$

yields a crossed complex, $(C(G), \partial)$ over a groupoid.
Proof. This is a consequence of the theory of hypercrossed complexes of Carrasco and Cegarra, [6]. A short (5 page) direct proof is the subject of the note [12].

We note that if G is a groupoid T-complex then $(C(G), \partial) \cong(N G, \partial)$. The question naturally arises as to whether there is a functor $T: S G p d s_{*} \rightarrow S G p d s_{*}$, taking values in the subcategory of groupoid T-complexes, and such that $C(G) \cong N(T(G))$. It is clear how to proceed, namely by using the semidirect decomposition of G, replacing each $N G_{n}$ by $C(G)_{n}$. In fact it is reasonably easy to construct a functor K 'inverse' to $N, K: C r s \rightarrow S G p d_{*}$ and then we can set $T=K C$. The construction is based on the following elementary observation.

Lemma 2.3. Let M, N be G-groups (i.e. groups with a G-action), and form $M \times N$, their product with the diagonal action of G. Then

$$
(M \times N)>\checkmark G \cong M \gg(N \rtimes G)
$$

where M is considered as a $(N \nsucc G)$-group via the projection onto $G\left(s o^{(n, g)} m={ }^{g} m\right)$.
The proof is omitted as it is easy.
Proposition 2.4 (A Dold-Kan theorem for groupoid T-complexes). There is a functor $K: C r s \rightarrow S G p d s_{*}$ so that
(i) for each C in Crs, $K C$ is a groupoid T-complex,
(ii) if C is in Crs, there is a natural isomorphism

$$
N K(C) \cong C
$$

(iii) if G is a groupoid T-complex, $K N(G) \cong G$.

Proof. We first note that there is a chain complex (with one non-abelian groupoid) given by all $C_{i}, i \geq 1$. From this we construct a simplicial group $K_{\bullet+1}(a)$ for each $a \in O b(C)$ using the Dold-Kan construction [9]. (Thus for instance

$$
\left.K_{3}(a)=C_{3}(a) \times s_{0} C_{2}(a) \times s_{1} C_{2}(a) \times s_{1} s_{0} C_{1}(a) .\right)
$$

As there is no action of any group on any other in the chain complex, there is no problem in constructing $K_{\bullet+1}$. Now we set $K(G)_{0}=C_{0}$, and note that it acts on $K_{1}=\left\{C_{1}(a)\right\}$. Assuming that $K(G)_{n-1}$ has been defined and an action of $K(G)_{n-1}$ on K_{n} given, we set

$$
K(G)_{n}=K_{n} \rtimes s_{n-1} K(G)_{n-1}
$$

and, noting that there is an iterated projection onto C_{0}, make $K(G)_{n}$ act on K_{n+1} via this projection. It is routine to check that this gives us a simplicial groupoid $K(C)$ with Moore complex isomorphic to C, thus proving (ii). If $C=N(G)$ for a groupoid T-complex, it is clear that $K C \cong G$. We leave the details of this to the reader.

It remains to prove that $K C(G)$ is a groupoid T-complex. For this we note that by repeated use of Lemma $2.3, K(C) \cong C_{n} \rtimes\left(s_{0} C_{n-1} \rtimes \cdots>s_{n-1} \ldots s_{0} C_{0}\right)$ but $N K(C)_{n} \cong C_{n}, D_{n} \cong\left(s_{0} C_{n-1} \rtimes \cdots>s_{n-1} \ldots s_{0} C_{0}\right)$ and hence $N K(C)_{n} \cap D_{n}$ is trivial as required.

Various other versions of this result have been proved previously. Nan-Tie [14] proves a Dold-Kan theorem exactly of this form, but with a different definition of groupoid T-complexes; see also [15] The above result (2.4), hence also proves that his definition is equivalent to that given here. The reduced case can be found in [6] and as we noted several of the ideas from their proof are present in the above.

Although we know that $C(G)$ is a quotient of $N G$, we do not automatically have that $K C(G)$ is a quotient of G. The main result of the argument so far is:

Theorem 2.5. Let Gpd-T denote the full subcategory of $S G p d s_{*}$ determined by the groupoid T-complexes, then the inclusion of $G p d-T$ into $S G p d s_{*}$ has a left adjoint $T=K C$ which satisfies $T^{2} \cong T$.

Proof. If G is in $S G p d s_{*}$, then the quotient map $N G \rightarrow C(G)$ is compatible with the hypercrossed complex structure of the two Moore complexes (cf. the argument on p. 223 of Carrasco and Cegarra [6]) and hence corresponds to a quotient map

$$
G \rightarrow T(G)
$$

If $f: G \rightarrow H$ is any map of simplicial groupoids with H a groupoid T-complex, then we may assume that f is over a fixed base map since otherwise, we can pull H back along the base map of f to reduce to that case. As H is a groupoid T-complex,

$$
f_{n}\left(\left(N G_{n} \cap D_{n}\right) d_{0}\left(N G_{n+1} \cap D_{n+1}\right)\right)
$$

is trivial, so f factors uniquely via a quotient map to $T(G)$ as required.
We thus have a composite functor

$$
\text { Simp.Sets } \rightarrow G p d-T
$$

given by $T G$.

The groupoids $T G(K)_{n}$ have been calculated to be $\pi_{n}\left(s k_{n} G, s k_{n-1} G\right)$ [6] and hence to be $\pi_{n+1}\left(s k_{n+1} K, s k_{n} K\right)$ by a long cxact sequence argument. Thus $C(G(K)) \cong \pi(|K|)$, the crossed complex associated to the filtered geometric realization of K.

Remark. It is worth noting that if $L: A \rightarrow \operatorname{Simp}$.Sets is a functor and $K=\operatorname{Colim} L$, then (i) $G(K) \cong \operatorname{Colim} G(L)$ (ii) $C(G(K)) \cong \operatorname{Colim} C(G(L))$ and (iii) $T(G(K)) \cong \operatorname{Colim}$ $T(G(L))$ as each of G, C and T are left adjoints and hence preserve colimits.

3. The 'verbal' subgroup(oid)

The reason for the title of this section is that in proving Theorem 2.5 above we obtained a quotient map from each G to the corresponding $T(G)$ which is analogous to the map comparing a group, G, with its ' \mathscr{V}-ification' for \mathscr{V} a variety of groups. The kernel of such a map is the verbal subgroup of G corresponding to \mathscr{V}. Thus a 'verbal subgroup(oid)' would be the natural thing to look for in our setting, giving those words whose vanishing is necessary and sufficient for a simplicial groupoid to be in $G p d-T$. We have of course, already one description of this verbal subgroupoid $\mathscr{V}(G)$, namely it satisfies

$$
N \mathscr{V}(G)_{n}=\left(N G_{n} \cap D_{n}\right) d_{0}\left(N G_{n+1} \cap D_{n+1}\right),
$$

however this does not give a useful description of $\mathscr{V}(G)$ as we have little direct knowledge of what $N G_{n} \cap D_{n}$, or $d_{0}\left(N G_{n+1} \cap D_{n+1}\right)$ looks like.

3.1. Derived modules and relative abelianisations

To analyse $\mathscr{V}(G)$ in more detail, we use a construction from [16], adapted to the groupoid case, and later on a related construction of Brown and Higgins [4].

Let O be a set, then we will call a groupoid with object set, O, simply an O-groupoid. Let G be an O-groupoid and $O-G p d s$, the subcategory of $G p d$ determined by the O groupoids and the groupoid morphisms between O-groupoids that are the identity on objects. Let $O-G p d s / G$ denote the category of O-groupoids over G. This category has finite products given by pullback over G, so we can consider abelian group objects in it. A calculation (going back in essence at least to [2]) shows that $\phi: H \rightarrow G$ is an abelian group object in $O-G p d s / G$ if and only if $H \cong M>\triangleleft G$ for some G-module M with ϕ the projection. The construction we will use is the abelianization, i.e. the left adjoint of the inclusion of the category of these abelian group objects into $O-G p d s / G$. Now consider a general

$$
(H, \phi) \rightarrow\left(M>\triangleleft G, p r_{G}\right)
$$

then

$$
f(h)=\left(f_{1}(h), \phi(h)\right)
$$

for some mapping $f_{1}: H \rightarrow M$. This f_{1} is a ϕ-derivation (again see [4, p. 38]),

$$
f_{1}\left(h h^{\prime}\right)=f_{1}(h)+{ }^{\phi(h)} f_{1}\left(h^{\prime}\right) .
$$

Writing $\operatorname{Der}_{\phi}(H, M)$ for the set of ϕ-derivations from H to M, we have

$$
O-G p d s / G\left((H, \phi),\left(M \gg G, p r_{G}\right)\right) \cong \operatorname{Der}_{\phi}(H, M)
$$

and as $\left(M \gg G, p r_{G}\right)$ is an abelian group object, $\operatorname{Der}_{\phi}(H, M)$ naturally has an abelian group structure.

If O is a singleton, that is if we are working with groups throughout, then $\operatorname{Der}_{\phi}(H, M)$ $\cong G-\operatorname{Mod}\left(D_{\phi}, M\right)$, where D_{ϕ} is the derived module of (H, ϕ) in the sense of [8]. This is well known to be isomorphic to $I H \otimes_{H} \mathbf{Z} G$ where $I H=\operatorname{ker}(\mathbf{Z} H \rightarrow \mathbf{Z})$ is the augmentation ideal of the group ring $\mathbf{Z} H$ of H. Brown and Higgins [4, pp. 37-39]), show that in the general case of O-groupoids, a similar construction works yielding a G-Module $\overrightarrow{\mathbf{Z} G}$, a constant G-module $\overrightarrow{\mathbf{Z}}$, with value \mathbf{Z}, and an augmentation module $\overrightarrow{\mathbf{I} G}$ which is the derived module for the terminal object ($G, I d_{G}$) of O - $G p d s$. (A right action is used in [4] but this is easily changed to a left one.) Finally D_{ϕ}, for a general (H, ϕ), is isomorphic to $\phi_{*}(\overrightarrow{\mathbf{I} H})$, the G-module induced from $\overrightarrow{\mathbf{I} H}$ along $\phi: H \rightarrow G$. This ϕ_{*} functor from H-modules to G-modules is a left additive Kan extension along $\phi: H \rightarrow G$, so has a description very much like that of $-\otimes_{H} \mathbf{Z} G$ of which it is a generalization. Thus

$$
\begin{aligned}
& O-G p d s / G\left((H, \phi),\left(M>\triangleleft G, p r_{G}\right)\right) \\
& \quad \cong A b(O-G p d s / G)\left(\left(D_{\phi} \rtimes G, p r_{G}\right),\left(M>G, p r_{G}\right) \cong G-\operatorname{Mod}\left(D_{\phi}, M\right),\right.
\end{aligned}
$$

i.e. the "abelianization" of (H, ϕ), or free abelian group object on (H, ϕ), is ($D_{\phi} \rtimes G$, $p r)$. We next turn to exactness properties of this derived module construction.

Lemma 3.1. Given a short exact sequence

$$
1 \rightarrow N \rightarrow H \rightarrow Q \rightarrow 1
$$

in $O-G p d s$, there is a short exact sequence of Q-modules,

$$
0 \rightarrow N^{\mathrm{Ab}} \rightarrow D_{p} \rightarrow \overrightarrow{\mathbf{I} Q} \rightarrow O
$$

where N^{Ab} is obtained by abelianizing all the groups of N, which being a kernel in $O-G p d s$ is a disjoint union of the groups $N(a)$ for $a \in O$.

This follows from Proposition 3.1 of Brown-Higgins [4, p. 46]. In fact we only use Lemma 3.1 in the simpler case where p is split, in which case the module sequence is also split:

$$
O \rightarrow N \rightarrow H \underset{p}{\stackrel{s}{\leftrightarrows}} Q \rightarrow O
$$

yields

$$
O \rightarrow N^{A b} \rightarrow D_{p} \underset{s^{\prime}}{\stackrel{p^{\prime}}{\rightleftarrows}} \overrightarrow{\mathbf{I} Q} \rightarrow O
$$

so we have an isomorphism

$$
D_{p} \cong N^{A b} \oplus s_{*}^{\prime}(\overrightarrow{\mathbf{I} Q})
$$

Now assume in addition this all happens in $O-G p d s / G$ so that the structure map from N to G is trivial. Then we have

$$
\begin{aligned}
D_{\psi} & =\psi_{*}(\overrightarrow{\mathbf{I} Q}) \\
D_{\phi} & =\psi_{*} p_{*}(\overrightarrow{\mathbf{I} H})=\psi_{*}\left(D_{p}\right) \cong D_{0} \oplus s_{*}\left(D_{\psi}\right) \\
D_{0} & =\psi_{*}\left(N^{A b}\right)
\end{aligned}
$$

If ψ is a quotient map, then $\psi_{*}\left(N^{A b}\right)$ is constructed by killing the action of $\operatorname{Ker} \psi$, i.e.

$$
\psi_{*}\left(N^{A b}\right) \cong \frac{N}{[N, N][N, s(\operatorname{Ker} \psi)]}
$$

As both N and $\operatorname{Ker} \psi$ are disconnected, this is effectively the classical construction at each object in O. We have

Lemma 3.2. In the above situation, there is a natural isomorphism

$$
D_{\phi} \cong\left(\frac{N}{[N, N][N, s(\operatorname{Ker} \psi)]}\right) \oplus s^{\prime}\left(D_{\psi}\right)
$$

Now consider a simplicial groupoid over G (c.g. a resolution in $O-G p d$ for G or the augmentation map $H \rightarrow \pi_{0} H$ for a simplicial groupoid $G=\pi_{0}(H)$.) We write $\phi_{0}: H_{0} \rightarrow G, \phi_{1}=\phi_{0} d_{0}=\phi_{0} d_{1}$ and so on, so that $\phi_{n}: H_{n} \rightarrow G$ is the structure map of the groupoid of n-simplices, $\phi_{n} d_{j}=\phi_{n+1}$ for all $i, 0 \leq i \leq n$, and similarly for the $s_{j}, \phi_{n} s_{j}=\phi_{n-1}$. We will also write this as $\phi_{\bullet}: H_{\bullet} \rightarrow G$, thinking of G as being $K(G, 0)$, the constant simplicial groupoid on G.

On applying the abelianisation functor (over G) as before, this yields $D(\phi) . \rtimes \triangleleft G$ over G which in dimension n is $D_{\phi_{n}} \rtimes \triangleleft G$. We now restrict to the case of H being a simplicial groupoid, with $G=\pi_{0}\left(H_{\bullet}\right)$ and ϕ_{0} being the standard quotient morphism. In this case, $\operatorname{Ker} \phi_{0}$ is $d_{0} N H_{1}$ so we obtain

$$
\begin{aligned}
D(\phi)_{0} \cong & \phi_{0 *}(\overrightarrow{\mathbf{I} H}), \\
D(\phi)_{1} \cong & \frac{N H_{1}}{\left[N H_{1}, N H_{1}\right]\left[N H_{1}, s_{0} d_{0} N H_{1}\right]} \oplus s_{0}\left(D_{\phi_{0}}\right) \\
D(\phi)_{2} \cong & \frac{N H_{2}}{\left[N H_{2}, N H_{2}\right]\left[N H_{2}, s_{0} N H_{1}\right]\left[N H_{2}, s_{1} N H_{1}\right]\left[N H_{2}, s_{1} s_{0} d_{0} N H_{1}\right]} \\
& \oplus s_{0}\left(N D(\phi)_{1}\right) \oplus s_{1}\left(D(\phi)_{1}\right),
\end{aligned}
$$

and so on. The semidirect decomposition of H_{n} yields the direct sum decomposition of $D(\phi)_{n}$ as a $\pi_{0}(H)$-module. The face and degencracy morphisms are, of course, those induced by the corresponding ones of H. In the above, we have used $N(D(\phi))_{1}$. If we write K_{n} for the simplicial subgroupoid, $\operatorname{Ker} \phi_{\bullet}: H_{\bullet} \rightarrow \pi_{0}\left(H_{\bullet}\right)$, i.e. the kernel of the simplicial map to the constant simplicial groupoid, $\pi_{0}\left(H_{\bullet}\right)$, then K_{n} has a semidirect decomposition which is the same as that of H_{n} except that H_{0} is replaced by $d_{0} N H_{1}$, so instead of the term $s_{n-1} \ldots s_{1} s_{0} H_{0}$, it contains $s_{n-1} \ldots s_{1} s_{0} d_{0} N H_{1}$. Using this subgroupoid, we find if $n \geq 1$

$$
N D(\phi)_{n} \cong \frac{N H_{n}}{\left[N H_{n}, K_{n}\right]}
$$

so the passage to $N D(\phi)$ merely kills the action of $\operatorname{Ker} \phi$.
A geometric interpretation of this derived module construction is not obvious, however there is one which is related to the complex of chains on the universal cover of a $C W$-complex. The link is via ideas originally explored by Whitehead [17] and then considerably extended by Brown and Higgins [4]. Suppose G is an O-groupoid and $(M ., \partial)$ is a complex of G-modules, then we form a crossed complex $\Delta\left(M_{0}, \partial\right)$ by

$$
\begin{aligned}
& \Delta\left(M_{\bullet}, \partial\right)_{n}=M_{n} \quad \text { if } n \geq 1 \\
& \Delta\left(M_{\bullet}, \partial\right)_{0}=M_{0} \rtimes G
\end{aligned}
$$

where for $n>1$, the boundary map

$$
\partial_{n}: \Delta\left(M_{\bullet}, \partial\right)_{n} \rightarrow \Delta\left(M_{\bullet}, \partial\right)_{n-1}
$$

is that of M_{0}, whilst for $n=1, \partial_{1}(m)=\left(\partial m, 1_{p}\right)$ if $m \in M_{0}(p)$. This defines a functor Δ from $\operatorname{Comp}(G-M o d)$ to Crs / G, i.e. crossed complexes augmented over the fixed G. This functor has a left adjoint:

If (C_{\bullet}, ϕ) is a crossed complex augmented over $\phi: C_{0} \rightarrow G$, define

$$
\begin{aligned}
& \zeta\left(C_{0}, \phi\right)_{n}=C_{n} \quad \text { if } n \geq 2 \\
& \zeta\left(C_{0}, \phi\right)_{1}=C_{1}^{A b}, \quad \text { the abelianization of } C_{1}, \\
& \zeta\left(C_{0}, \phi\right)_{0}=D_{\phi},
\end{aligned}
$$

with the differential of $\zeta\left(C_{\bullet}, \phi\right)$ induced, in the obvious way, from that of C_{\bullet}. The proof that ζ is left adjoint to Δ should be fairly clear given our earlier 'recall' of the theory of derived modules, alternatively it can be found in [4].

Proposition 3.3. If H_{\bullet} is a simplicial groupoid, augmented via $\phi: H_{\bullet} \rightarrow \pi_{0}\left(H_{\mathbf{\bullet}}\right)$, and $C\left(H_{\bullet}\right)$ is the associated crossed complex then $\zeta\left(C\left(H_{\bullet}\right), \phi\right) \cong N D(\phi)$.

Proof. Consider the corresponding right adjoints and used the Dold-Kan theorem.

Corollary 3.4. For $n \geq 2$,

$$
\begin{aligned}
C\left(H_{\bullet}\right) & \cong N D(\phi)_{n} \\
& \cong \frac{N H_{n}}{\left[N H_{n}, K_{n}\right]}
\end{aligned}
$$

where $K_{n}=(\operatorname{Ker} \phi)$ as before.
Proof. By the previous discussion, ζ does nothing in dimensions greater than 1.
Thus we have a second description of $C\left(H_{\bullet}\right)$ and hence of the verbal subgroupoid or at least of its Moore complex $N \mathscr{V}(H)_{n} \cong\left[N H_{n}, K_{n}\right]$.

In dimension 1, the verbal subgroupoid is generated by the Peiffer identities and hence can be conveniently written as

$$
N \mathscr{V}(H)_{1}=\left[\operatorname{Kerd}_{1}, \operatorname{Kerd}_{0}\right]=d_{0}\left(N H_{2} \cap D_{2}\right)
$$

(see [5]). Finally in dimension zero it is trivial as $C(H)_{0}=N H_{0}=H_{0}$. This gives our main theorem:

Theorem 3.5 (Generating words for the variety of crossed complexes). The verbal simplicial subgroupoid of $G \bullet$ corresponding to the variety of groupoid T-complexes is given by
(i) $\mathscr{V}(G)_{0}$ is trivial,
(ii) $\mathscr{V}(G)_{1}$ is generated by all $[x, y], x \in N G_{1}, y \in \operatorname{Kerd}_{0}$
(iii) $N \mathscr{V}(G)_{n}$ is generated by all $[x, y], x \in N G_{n}, y \in(\operatorname{Ker} \phi)_{n}$, for $n \geq 2$.

Of course in $\mathscr{V}(G)_{n}$, we also have all of $s_{\alpha} N \mathscr{V}(G)_{n-r(\alpha)}$ and so to obtain a full description of a set of generators of $\mathscr{V}(G)_{n}$, one needs to include all images of generators of the lower terms in the Moore complex and their conjugates in G_{n}. To use Theorem 3.5 for calculations it will be necessary to look at the case of a free simplicial group or groupoid, G_{\bullet} and to see if the analysis of Hall words can be adapted to this case.

Acknowledgements

The authors wish to thank the members of the Granada Algebra section and in particular A. Cegarra, M. Bullejos and P. Carrasco for useful conversations. The first author acknowledges the financial support of the University of Wales and of ERASMUS.

References

[1] N. Ashley, Simplicial T-complexes: a nonabelian version of a theorem of Dold-Kan, Dissertationes Math. 165 (1988) 11-58.
[2] J. Beck, Triples, algebras and cohomology, Thesis, Columbia University, 1967.
[3] R. Brown and P.J. Higgins, Homotopies and tensor products for ω-groupoids and crossed complexes, J. Pure Appl, Algebra 47 (1987) 1-33.
[4] R. Brown and P.J. Higgins, Crossed complexes and chain complexes with operators, Math. Proc. Cambridge Philos. Soc. 107 (1990) 33-57.
[5] R. Brown and J.-L. Loday, van Kampen theorems for diagrams of spaces, Topology 26 (1987) 331-335.
[6] P. Carrasco and A.M. Cegarra, Group-theoretic algebraic models for homotopy types, J. Pure Appl. Algebra 75 (1991) 195-235.
[7] D. Conduché, Modules croisés généralisés de longueur 2, J. Pure Appl. Algebra 34 (1984) 155-178.
[8] R.H. Crowell, The derived module of a homomorphism, Adv. Math. 6 (1971) 210-238.
[9] E.B. Curtis, Simplicial homotopy theory, Adv. Math. 6 (1971) 107-209.
[10] M.K. Dakin, Kan complexes and multiple groupoid structure, Ph.D. Thesis, University of Wales, 1977.
[11] W. Dwyer and D.M. Kan, IIomotopy theory and simplicial groupoids, Proc. Konink. Neder. Akad. 87 (1987) 379-389.
[12] P.J. Ehlers and T. Porter, From simplicial groupoids to crossed complexes, preprint, Bangor 1995.
[13] L. Illusie, Complexe Cotangent et Déformation II, Lecture Notes in Math, Vol. 283 (Springer, Berlin, 1972).
[14] G. Nan Tie, A Dold-Kan theorem for crossed complexes, J. Pure Appl. Algebra 56 (1989) 177-194.
[15] G. Nan Tie, Iterated \bar{W} and T-groupoids, J. Pure Appl. Algebra 56 (1989) 195-209.
[16] D.G. Quillen, On the (co-)homology of commutative rings, Proc. Amer. Math. Soc. Symp. on Categorical Algebra (1970) 65-87.
[17] J.H.C. Whitehead, Combinatorial homotopy II, Bull Amer. Math. Soc. 55 (1949) 213-245.

[^0]: * Corresponding author.

